Problem 1. Evaluate the following derivatives.
a. Let $f(x)=\frac{1}{2} x^{3}+3 x^{2}+e^{4 x}$. What is $f^{\prime}(x)$?
b. Let $g(y)=3 y-4+e^{-3 y^{2}}$. What is $g^{\prime}(y)$?
c. Let $h(t)=\sqrt{3 t}+\frac{8}{5 t^{2}}$. What is $\frac{\mathrm{d}}{\mathrm{d} t} h(t)$?

Problem 2. Determine the antiderivative of each of the following functions.
(Assume $x>0$ in all cases.)
a. $f(x)=3 x^{2}-4 \sqrt{x}$.
b. $g(x)=3 e^{-5 x}$.
c. $h(x)=x^{3}+\frac{1}{x^{3}}-\frac{4}{x}$.

Problem 3. Compute each of the following definite integrals.
a. $\int_{0}^{4} x-3 x^{2} \mathrm{~d} x$.
b. $\int_{1}^{4} \sqrt{x} \mathrm{~d} x$.
c. $\int_{2}^{5} e^{-2 x} \mathrm{~d} x$.

Problem 4. Find the value of C so that

$$
\int_{0}^{2} C x^{2} \mathrm{~d} x=1
$$

Problem 5. Consider the following piecewise-defined function:

$$
f(x)=\left\{\begin{aligned}
2 x, & x \in[0,1] \\
4-2 x, & x \in(1,2] \\
0, & \text { otherwise }
\end{aligned}\right.
$$

a. Sketch a graph of this function.
b. Is this a continuous function?
c. For what values of x is this function differentiable?
d. Write $f^{\prime}(x)$ as a piecewise-defined function.
e. For all $x>0$, determine $F(x)=\int_{0}^{x} f(y) \mathrm{d} y$.
f. Sketch $F(x)$.

