Math 1230: Stat for Scientists

Calculus: derivatives and integrals

Problem 1. Evaluate the following derivatives. a. Let $f(x) = \frac{1}{2}x^3 + 3x^2 + e^{4x}$. What is f'(x)?

b. Let $g(y) = 3y - 4 + e^{-3y^2}$. What is g'(y)? c. Let $h(t) = \sqrt{3t} + \frac{8}{5t^2}$. What is $\frac{d}{dt}h(t)$?

Problem 2. Determine the antiderivative of each of the following functions. (Assume x > 0 in all cases.)

a. $f(x) = 3x^2 - 4\sqrt{x}$. b. $g(x) = 3e^{-5x}$. c. $h(x) = x^3 + \frac{1}{x^3} - \frac{4}{x}$.

Problem 3. Compute each of the following definite integrals.

a.
$$\int_{0}^{4} x - 3x^{2} dx$$
.
b. $\int_{1}^{4} \sqrt{x} dx$.
c. $\int_{2}^{5} e^{-2x} dx$.

Problem 4. Find the value of *C* so that

$$\int_0^2 Cx^2 \mathrm{d}x = 1.$$

Problem 5. Consider the following piecewise-defined function:

$$f(x) = \begin{cases} 2x, & x \in [0,1] \\ 4 - 2x, & x \in (1,2] \\ 0, & \text{otherwise} \end{cases}$$

- a. Sketch a graph of this function.
- b. Is this a continuous function?
- c. For what values of *x* is this function differentiable?
- d. Write f'(x) as a piecewise-defined function.
- e. For all x > 0, determine $F(x) = \int_0^x f(y) dy$.
- f. Sketch F(x).